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Abstract

Distortion risk measures summarize the risk of a loss distribution by means of
a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and
Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a
large number of fuzzy rules into a single value. We show that these concepts can be
derived from the Choquet integral, and then the mathematical relationship between
distortion risk measures and the OWA and WOWA operators for discrete and finite
random variables is presented. This connection offers a new interpretation of dis-
tortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can
be understood from a different perspective. The theoretical results are illustrated
in an example.

1 Introduction

The relationship between two apparently unconnected worlds, risk theory and fuzzy sys-
tems, is investigated in this paper. Risk theory evaluates potential losses and is useful for
decision making under probabilistic uncertainty. Broadly speaking, fuzzy logic is a form of
reasoning based on the ’degree of truth’ rather than on the binary true-false principle. But
risk theory and fuzzy systems share a common core theoretical background. Both fields
are related to the human psychological behavior under risk, ambiguity or uncertainty.
The Expected Utility Theory by von Neumann and Morgenstern (1947) is one of the
first attempts to provide a theoretical foundation to human behavior in decision-making,
mainly based on setting up axiomatic preference relations of the decision maker. Sim-
ilar theoretical approaches are, for instance, the Certainty-Equivalence Theory (Handa,
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1977), the Cumulative Prospect Theory (Kahneman and Tversky, 1979), the Theory of
Anticipated Utility (Quiggin, 1982), the Dual Theory of Choice under Risk (Yaari, 1987),
the Expected Utility without Subadditivity (Schmeidler, 1989) or the Cumulative Rep-
resentation of Uncertainty (Tversky and Kahneman, 1992), where the respective axioms
reflect different human behaviors or preference relations in decision-making under the
unpredictable.

Previous attempts to link risk management and fuzzy logic approaches are mainly
found in the literature on fuzzy systems. Most authors have focused on the application
of fuzzy criteria to financial decision making (Engemann et al., 1996; Gil-Lafuente, 2005;
Merigó and Casanovas, 2011), where some have smoothed financial series under fuzzy logic
for prediction purposes (Yager and Filev, 1999; Yager, 2008). However, to our knowledge,
the mathematical connections between these two worlds have not yet been provided for
risk measurement applications.

In this paper we analyze the mathematical relationship between risk measurement and
aggregation in fuzzy systems for discrete random variables. A risk measure quantifies the
complexity of a random loss in one value that reflects the amount at risk. A key concept
in fuzzy systems applications is the aggregation operator, which also allows to combine
data into a single value. We show the relationship between the well-known distortion
risk measures introduced by Wang (1996) and two specific aggregation operators, the Or-
dered Weighted Averaging (OWA) operator introduced by Yager (1988) and the Weighted
Ordered Weighted Averaging (WOWA) operator introduced by Torra (1997).

Distortion risk measures, OWA and WOWA operators can be analyzed from the The-
ory of Measure. Classical measures are additive, and linked to the Lebesgue integral.
When the additivity is relaxed, different measures and, hence, different integrals are de-
rived. This is the case of non-additive measures (often called capacities as it was the name
coined by Choquet, 1954), and we show that the link between distortion risk measures
and OWA and WOWA operators is derived by means of the integral linked to capacities,
i.e. the Choquet integral.

The paper is organized as follows. In section 2, we introduce risk theory concepts and
fuzzy systems concepts. The relationship between distortion risk measures and aggrega-
tion operators is provided in section 3. An application with some classical risk measures
is given in section 4. Finally, implications derived from these results are discussed in the
conclusions.

2 Background and notation

In order to keep this article self-contained and to present the connection between two
apparently distant theories, we need to introduce the notation and some basic definitions
that may be well known for most readers.
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2.1 Distortion risk measures

A recursive question in risk management is the suitability of risk measures, i.e. a good
risk measure should properly reflect the borne risk. A lot of research aims to answer this
question and most often it is addressed from an axiomatic point of view. In other words,
risk measures are forced to satisfy suitable properties. Two well known groups of axiom-
based risk measures are coherent risk measures, as stated by Artzner et al. (1999), and
distortion risk measures, as introduced by Wang (1996); Wang et al. (1997). Concavity
of the distortion function is the key element to define risk measures that belong to both
families (Wang and Dhaene, 1998). Suggestions on new desirable properties for distortion
risk measures are proposed in Balbas et al. (2009), while generalizations of this kind of
risk measures can be found, among others, in Hürlimann (2006) and Wu and Zhou (2006).

The axiomatic research on risk measures has extensively been developed since seminal
papers on coherent risk measures and distortion risk measures. Each set of axioms for risk
measures corresponds to a particular behavior of decision makers under risk, ambiguity
or uncertainty, as it has been shown, for instance, in Bleichrodt and Eeckhoudt (2006)
and Denuit et al. (2006). Most often, those articles present the link to a theoretical
foundation of human behavior explicitly. For example Wang (1996) show the connection
between distortion risk measures and Yaari’s Dual Theory of Choice Under Risk and
Kaluszka and Krzeszowiec (2012) introduce the generalized Choquet integral premium
principle and relate it to Kahneman and Tversky’s Cumulative Prospect Theory.

Basic risk concepts are formally defined below. We need to start from that point to
set up the notation used in section 3.

Definition 2.1 (Probability space). A probability space is defined through three elements
(Ω,A,P). The sample space Ω is a set of the possible events of a random experiment, A is
a family of the set of all subsets of Ω (denoted as A ∈ ℘ (Ω)) with a σ−algebra structure,
and the probability P is a mapping from A to [0, 1] such that P (Ω) = 1, P (∅) = 0 and P
satisfies the σ − additivity property.

The probability space is finite if the sample space is finite, Ω = {$1, $2, ..., $n}. Then
℘ (Ω) is the σ − algebra, which is denoted as 2Ω. In the rest of the article, N instead of
Ω will be used when referring to finite probability spaces. Hence, the notation will be(
N, 2N ,P

)
.

Definition 2.2 (Random variable). Let (Ω,A,P) be a probability space. A random vari-
able X is a mapping from Ω to R such that X−1 ((−∞, x]) := {$ ∈ Ω : X ($) ≤ x} ∈ A,
∀x ∈ R.

A random variable X is discrete if X (Ω) is a finite set or a numerable set without
cumulative points, i.e. X (Ω) is {x1, x2, ..., xn, ...}.

Definition 2.3 (Distribution function of a random variable). Let X be a random variable.
The distribution function of X, denoted by FX , is defined by

FX (x) = P
(
X−1 ((−∞, x])

)
= P ({$ ∈ Ω : X ($) ≤ x}) ≡ P (X ≤ x) .
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FX is non-decreasing, right-continuous and lim
x→−∞

FX (x) = 0 and lim
x→+∞

FX (x) = 1.

The survival function of X, denoted by SX , is defined by SX (x) = 1− FX (x) , , x ∈ R.
Note that the domain of the distribution function and the survival function is R even if
X is a discrete random variable. In other words, FX and SX are defined for X (Ω) =
{x1, x2, ..., xn, ...} but also for any x ∈ R\ {x1, x2, ..., xn, ...}.

Definition 2.4 (Risk measure). Let Γ be the set of all random variables defined for a
given probability space (Ω,A,P). A risk measure is a mapping ρ from Γ to R, so that
ρ (X) is a real value for each X ∈ Γ.

Definition 2.5 (Distortion risk measure). Let g : [0, 1] → [0, 1] be a non-decreasing
function such that g (0) = 0 and g (1) = 1 (we will call g a distortion function). A
distortion risk measure associated to distortion function g is defined by

ρg (X) := −
∫ 0

−∞
[1− g (SX (x))] dx+

∫ +∞

0

g (SX (x)) dx

The simplest distortion risk measure is the mathematical expectation, which is ob-
tained when the distortion function is the identity (see Denuit et al., 2005). The two
most widely used distortion risk measures are the Value-at-Risk (V aRα) and the Tail
Value-at-Risk (TV aRα). Broadly speaking, the V aRα corresponds to a high percentile of
the distribution function. The TV aRα is the expected value over this percentile 1 if the
random variable is continuous. The former pursues to answer what is the maximum loss
that can be suffered with a certain confidence level α, where α ∈ (0, 1). The latter eval-
uates what is the expected loss if the loss is larger than the V aRα for a given confidence
level. Both risk measures are distortion risk measures with associated distortion functions
shown in Table 2.1. Unlike the V aRα, the distortion function associated to the TV aRα

is concave and, then, the TV aRα is a coherent risk measure in the sense of Artzner et al.
(1999). Basically, it means that TV aRα is sub-additive (see Acerbi and Tasche, 2002)
while the V aRα is not.

Table 2.1: Correspondence between risk measures and distortion functions

Risk measure Distortion function g(x)

V aRα ψα (x) =

{
0 if x ≤ 1− α
1 if x > 1− α

}
= 1(1−α,1](x)

TV aRα γα (x) =

{ x

1− α
if x ≤ 1− α

1 if x > 1− α

}
= min

{
x

1− α
, 1

}

1We consider TV aRα as defined in Denuit et al. (2005). That is, TV aRα (X) =
1

1− α

∫ 1

α

V aRδ (X) dδ.
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2.2 The OWA and WOWA operators and the Choquet integral

Aggregation operators (or aggregation functions) have extensively been used as a natural
form to combine inputs into a single value. These inputs are typically interpreted as
degrees of membership in fuzzy theory, degrees of preference, strength or evidence, or
support of a hypothesis. Aggregation operators are considered when a multi-criteria
decision-making problem, connectives in fuzzy logic or group decision-making problems
are faced up, because this functions aim at summarizing data into a single value according
to specific aggregation criteria. Let us denote by R = [−∞,+∞] the extended real line,
and by I any type of interval in R (open, closed, with extremes being ∓∞,...). Following
Grabisch et al. (2011), an aggregation operator is defined as follows.

Definition 2.6 (Aggregation operator). An aggregation operator in In is a function F (n) :
In −→ I, that is non-decreasing in each variable; fulfills the following boundary conditions:
inf
~x∈In

F (n) (~x) = inf I, sup
~x∈In

F (n) (~x) = sup I and F (1) (x) = x for all x ∈ I.

Some basic aggregation operators are displayed in Table 2.2.
There is a huge amount of literature on aggregation operators and its applications

(see, for example, Beliakov et al., 2007; Torra and Narukawa, 2007; Grabisch et al.,
2009, 2011). Despite the large number of aggregation operators, we focus on the OWA
operator and on the WOWA operator. Several reasons lead us to this selection. The OWA
operator has been extensively applied in the context of decision making under uncertainty
because it provides a unified formulation for the optimistic, the pessimistic, the Laplace
and the Hurwicz criteria (Yager, 1993), and there are also some interesting generalizations
(Yager et al., 2011). The WOWA operator combines the OWA operator with the concept
of weighted average, where weights are a mechanism to include expert opinion on the
accuracy of information. This operator is closely linked to distorted probabilities.

2.2.1 Ordered Weighted Averaging operator

The OWA operator is an aggregation operator that provides a parameterized family of
aggregation operators offering a compromise between the minimum and the maximum
aggregation functions (Yager, 1988). It can be defined as follows 2

Definition 2.7 (OWA operator). Let ~w = (w1, w2, ..., wn) ∈ [0, 1]n such that
∑n

i=1wi = 1.
The Ordered Weighted Average (OWA) operator with respect to ~w is a mapping from Rn to

R defined by OWA~w (x1, x2, ..., xn) =
n∑
i=1

xσ(i) ·wi, where σ is a permutation of (1, 2, ..., n)

such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), i.e. xσ(i) is the i-th smallest value of x1, x2, ..., xn.

2Unlike the original definition provided by Yager (1988), we consider an ascending order in ~x instead
of a decreasing one. This definition is convenient from the risk management perspective since ~x may be a
set of losses and losses are usually ordered in ascending order. This approach is not new. The relationship
between the ascending OWA and the descending OWA operators is provided by Yager (1993).
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Table 2.2: Basic F (n) aggregation operators

Name Mathematical expression Type of interval I

Arithmetic
mean

AM (~x) =
1

n

n∑
i=1

xi Arbitrary I. If I = R, the convention
+∞+(−∞) = −∞ is often considered.

Product Π (~x) =
n∏
i=1

(xi) I ∈ {|0, 1|, |0,+∞|, |1,+∞|}, where
|a, b| means any kind of interval, with
boundary points a and b, and with the
convention 0 · (+∞) = 0.

Geometric
mean

GM (~x) =

(
n∏
i=1

(xi)

)1/n

I ⊆ [0,+∞], with the convention 0 ·
(+∞) = 0.

Minimum
function

Min (~x) = min {x1, x2, ..., xn} Arbitrary I.

Maximum
function

Max (~x) = max {x1, x2, ..., xn} Arbitrary I.

Sum func-
tion

∑
(~x) =

n∑
i=1

xi I ∈ {|0,+∞|, | −∞, 0|, | −∞,+∞|},
with the convention +∞ + (−∞) =
−∞.

k-order
statistics

OSk (~x) = xj, k ∈ {1, ..., n}
where xj is such that
# {i|xi ≤ xj} ≥ k and
# {i|xi > xj} < n− k

Arbitrary I.

k-th pro-
jection

Pk (~x) = xk, k ∈ {1, ..., n} Arbitrary I.

Source: Grabisch et al. (2011), ~x denotes (x1, x2, ..., xn)
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The OWA operator is commutative, monotonic and idempotent, and it is lower-
bounded by the minimum and upper-bounded by the maximum operators. Commutativ-
ity is referred to any permutation of the components of ~x. That is, if the OWA~w operator
is applied to any ~y such that yi = xr(i) for all i, and r is any permutation of (1, ..., n), then
OWA~w (~y) = OWA~w (~x). Monotonicity means that if xi ≥ yi for all i, then OWA~w (~x) ≥
OWA~w (~y). Idempotency assures that if xi = a for all i, then OWA~w (~x) = a. The OWA
operator accomplishes the boundary conditions because it is delimited by the minimum
and the maximum functions, i.e. mini=1,...,n {xi} ≤ OWA~w (~x) ≤ maxi=1,...,n {xi}.

The OWA~w is unique with respect to the vector ~w (the proof is provided in the
Appendix). The characterization of the weighting vector ~w is often made by means of the
degree of orness measure (Yager, 1988).

Definition 2.8 (Degree of orness of an OWA operator). Let ~w ∈ [0, 1]n such that∑n
i=1wi = 1, the degree of orness of OWA~w is defined by

orness (OWA~w) =
n∑
i=1

(
i− 1

n− 1

)
· wi

Note that the degree of orness represents the level of aggregation preference between
the minimum and the maximum that is considered when ~w is fixed. The degree of orness
can be understood as the value that the OWA operator returns when it is applied to
~x∗ =

(
0

n−1
, 1
n−1

, ..., n−2
n−1

, n−1
n−1

)
. In other words, orness (OWA~w) = OWA~w

(
~x∗
)
. The

fact that orness (OWA~w) ∈ [0, 1] follows from ~x∗, ~w ∈ [0, 1]n. If ~w = (1, 0, ..., 0), then
OWA~w ≡ Min and orness (Min) = 0. Conversely, if ~w = (0, 0, ..., 1), then OWA~w ≡
Max and orness (Max) = 1. And when ~w is such that wi = 1

n
for all i, then OWA~w is

the arithmetic mean and its degree of orness is 0.5. As we will see later orness is closely
related the α level chosen in risk measures.

Alternatively to the degree of orness, other measures can be used to characterize the
weighting vector, such as the entropy of dispersion (Yager, 1988) based on the Shannon
entropy (Shannon, 1948) and the divergence of the weighting vector (Yager, 2002). A
summary of these and additional measures is found in Torra and Narukawa (2007, Ch.7).

The OWA operator has been extended and generalized in different ways. For example,
Xu and Da (2002) introduced the uncertain OWA (UOWA) operator in order to deal
with imprecise information, Merigó and Gil-Lafuente (2009) developed a generalization
by using induced aggregation operators and quasi-arithmetic means called the induced
quasi-OWA (Quasi-IOWA) operator and Yager (2010) introduced a new approach for
using norms in the OWA operator. Although it is out of the scope of this paper, the
OWA operator is also related to the linguistic quantifiers introduced by Zadeh (1985),
where a class of them may be interpreted as distortion functions.

2.2.2 Weighted Ordered Weighted Averaging operator

The WOWA operator is the aggregation function introduced by Torra (1997). This oper-
ator unifies in the same formulation the weighted mean function and the OWA operator
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in the following way 3.

Definition 2.9 (WOWA operator). Let ~v = (v1, v2, ..., vn) ∈ [0, 1]n and ~q = (q1, q2, ..., qn) ∈
[0, 1]n such that

∑n
i=1 vi = 1 and

∑n
i=1 qi = 1. The Weighted Ordered Weighted Average

(WOWA) operator with respect to ~v and ~q is a mapping from Rn to R defined by

WOWAh,~v,~q (x1, x2, ..., xn) =
n∑
i=1

xσ(i) ·

h
∑
j∈Aσ,i

qj

− h
 ∑
j∈Aσ,i+1

qj


where σ is a permutation of (1, 2, ..., n) such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), Aσ,i =
{σ (i) , ..., σ (n)} and h : [0, 1] → [0, 1] is a non-decreasing function such that h (0) := 0

and h

(
i

n

)
:=

n∑
j=n−i+1

vj; and h is linear if the points

(
i

n
,

n∑
j=n−i+1

vj

)
lie on a straight

line.

Note that this definition implies that weights vi can be expressed as vi = h

(
n− i+ 1

n

)
−

h

(
n− i
n

)
and that h (1) = 1.

The WOWA operator generalizes the OWA operator. Given a WOWA~v,~q operator on
Rn with associated h function, if we consider

wi := h

∑
j∈Aσ,i

qj

− h
 ∑
j∈Aσ,i+1

qj


and OWA~w where ~w = (w1, ..., wn), then the following equality holds WOWA~v,~q =
OWA~w. As it can easily be shown, vector ~w satisfies the following conditions:

(i) ~w ∈ [0, 1]n;

(ii)
n∑
i=1

wi = 1;

Condition (i) is easily shown. Let us denote si =
∑

j∈Aσ,i qj and sn+1 := 0. Hence,

si ≥ si+1 for all i due to the fact that Aσ,i ⊇ Aσ,i+1 and that qj ≥ 0. Then h (si) ≥ h (si+1)
since h is a non-decreasing function. Finally, as si ∈ [0, 1] and h(s) ∈ [0, 1] for all s ∈ [0, 1],
then it follows that wi = h(si)− h(si+1) ∈ [0, 1] for all i.

To prove condition (ii), note that Aσ,1 = N ,
∑

j∈N qj = 1 and that h (1) = 1 and

h (0) = 0, then
n∑
i=1

wi =
n∑
i=1

(h(si)− h(si+1)) = h(s1)− h(sn+1) = 1− 0 = 1.

3In the original definition provided by Torra (1997) ~x components are in descending order, while we
use ascending order. An additional subindex regarding the h function is also introduced.
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Remark 1

Let us analyze the particular case when OWA and WOWA operators provide the expec-
tation of random variables. Suppose that X is a discrete random variable that takes n
different values and ~x ∈ Rn is the vector of values where the components are in ascending

order. Let us consider vector ~w ∈ [0, 1]n such that
n∑
i=1

wi = 1 and vector ~p ∈ [0, 1]n refers

to the probabilities of the components of ~x . Obviously, it holds that OWA~p (~x) = E (X).
Then, OWA~w (~x) is equal to E (X) if and only if ~w = ~p, due to the uniqueness of the
OWA operator. Given a h function and ~q = ~p, the WOWAh,~v,~q (~x) may be expressed as

WOWAh,~v,~p (~x) =
n∑
i=1

xi ·

[
h

(
n∑
j=i

pj

)
− h

(
n∑

j=i+1

pj

)]
=

=
n∑
i=1

xi · [h (SX (xi−1))− h (SX (xi))]

If h is the identity function then WOWAh,~v,~p (~x) = E (X) because of SX (xi−1)−SX (xi) =
pi for all i (with the convention x0 := −∞).

Remark 2

Note that if X is discrete and uniformly distributed then SX (xi−1) =
n− i+ 1

n
, and hence

h (SX (xi−1)) = h

(
n− i+ 1

n

)
=

n∑
j=i

vj. This remark is helpful to interpret the WOWA

operator from the perspective of risk measurement. In the WOWA operator the subjective
opinion of experts may be represented by vector ~v. Let us suppose that no information
regarding the distribution function of a discrete and finite random variable X is available.
If we assume that X is discrete and uniformly distributed, then vector ~v directly consists
of the subjective probabilities of occurrence of the components xi according to the expert
opinion. Another possible point of view in this case is that ~v represents the subjective
importance that the expert give to each xi.
Nonetheless, note that the fact that the domain of the survival function is R implies that
the selected h function is important from risk measurement point of view. The relevance
of the h function is smaller in fuzzy systems.

2.2.3 The Choquet integral

The Choquet integral has become a familiar concept to risk management experts since it
was introduced by Wang (1996) in the definition of distortion risk measures. OWA and
WOWA operators can also be defined based on the concept of Choquet integral. In this
subsection we follow Grabisch et al. (2011) to provide several definitions which are needed
the section 3.
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Definition 2.10 (Capacity). Let N := {m1, ...,mn} be a finite set and 2N := ℘ (N) be
the set of all subsets of N . A capacity or a fuzzy measure on N is a mapping from 2N to
[0, 1] which satisfies

(i) µ (∅) = 0

(ii) A ⊆ B ⇒ µ (A) ≤ µ (B), for any A,B ∈ 2N (monotonicity).

If µ (N) = 1, then we say that µ satisfies normalization, which is a frequently required
property.

Definition 2.11 (Dual capacity). Let µ be a capacity on N . Its dual or conjugate capacity
µ̄ is a capacity on N defined by

µ̄ (A) = µ (N)− µ
(
Ā
)
,

where Ā = N\A (i.e., Ā is the set of all the elements in N that do not belong to A).

If we consider a finite probability space
(
N, 2N ,P

)
, note that the probability P is a

capacity (or a fuzzy measure) on N that satisfies normalization. In addition, P is its own
dual capacity.

Definition 2.12 (Choquet integral for discrete positive functions). Let µ be a capacity
on N , and f : N → [0,+∞) be a function. Let σ be a permutation of (1, ..., n), such that
f
(
mσ(1)

)
≤ f

(
mσ(2)

)
≤ ... ≤ f

(
mσ(n)

)
, and Aσ,i =

{
mσ(i), ...,mσ(n)

}
, with Aσ,n+1 = ∅.

The Choquet integral of f with respect to µ is defined by

Cµ (f) :=
n∑
i=1

f
(
mσ(i)

)
(µ (Aσ,i)− µ (Aσ,i+1)) .

If we let f
(
mσ(0)

)
:= 0, then an equivalent expression for the definition of the Choquet

integral is Cµ (f) =
n∑
i=1

[
f
(
mσ(i)

)
− f

(
mσ(i−1)

)]
µ (Aσ,i) .

The concept of degree of orness introduced for the OWA operator may be extended
to the case of the Choquet integral for positive functions as:

orness (Cµ) :=
n∑
i=1

(
i− 1

n− 1

)
· (µ (Aid,i)− µ (Aid,i+1)) . (2.1)

We will concentrate on three particular capacities. The first one, denoted as µ∗, is
such that µ∗ (A) = 0 if A 6= N and µ∗ (N) = 1. In this case, Cµ∗ ≡ Min and we find
through expression (2.1) that orness (Min) = 0. The second case, denoted as µ∗, is such
that µ∗ (A) = 0 if A 6= {n} and µ∗ ({n}) = 1. In this situation, Cµ∗ ≡ Max and, as
expected, we get that orness (Max) = 1. Finally, we consider capacities µ# such that
µ# (A) solely depends on the cardinality of A for all A ⊆ N . Then µ# (Aσ,i)−µ# (Aσ,i+1)
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is defined by i. If we denote by wi := µ# (Aσ,i) − µ# (Aσ,i+1) for all i, it follows that
Cµ# is equal to OWA~w. In the particular case where µ# (A) = #A

n
for any A ⊆ N , then

wi = n−(i−1)
n
− n−i

n
= 1

n
. So, in this situation Cµ# is the arithmetic mean, and we can

verify that orness
(
Cµ#
)

= 0.5 in the following way:

orness
(
Cµ#
)

=
n∑
i=1

(
i− 1

n− 1

)
·
(
µ# (Aid,i)− µ# (Aid,i+1)

)
=

=
n∑
i=1

(
i− 1

n− 1

)
· 1

n
=

n∑
i=1

(
i

n− 1

)
· 1

n
− 1

n− 1
=

=
1

n
· 1

n− 1
· n · (n+ 1)

2
− 1

n− 1
=
n− 1

2
· 1

n− 1
=

1

2
.

(2.2)

In order to be able to work with negative functions, the Choquet integral of such func-
tions needs to be defined for that case. Below we define the asymmetric Choquet integral,
which is the classical extension from real-valued positive functions to negative functions.
Nonetheless, symmetric extensions have gained an increasing interest (Kojadinovic et al.,
2005; ?, see).

Definition 2.13 (Asymmetric Choquet integral for discrete negative functions). Let f :
N → (−∞, 0] be a function, µ a capacity on N and µ̄ its dual capacity. The asymmetric
Choquet integral of f with respect to µ is defined by Cµ (f) := −Cµ̄ (−f) .

If f is a function from N to R and µ is a capacity on N , and we denote by f+ (mi) =
max {f (mi) , 0} and f− (mi) = min {f (mi) , 0}, then the Choquet integral of f with
respect to µ is defined by

Cµ (f) = Cµ
(
f+
)

+ Cµ
(
f−
)

= Cµ
(
f+
)
− Cµ̄

(
−f−

)
. (2.3)

3 The relationship between distortion risk measures,

OWA and WOWA operators

Three main results for discrete random variables are provided in this section. First, the
equivalence between the Choquet integral and a distortion risk measure is shown, when
the distortion risk measure is fixed on a finite probability space. Second, the link between
this distortion risk measure and a set of OWA operators is provided. And, third, the
relationship between the fixed distortion risk measure and a set of WOWA operators is
given. Finally, we show that the degree of orness of the V aRα and TV aRα risk measures
may be defined as a function of the confidence level when the random variable is given.
To our knowledge, some of these results provide a new insight into the way classical risk
quantification is understood, as it can now be viewed as a weighted aggregation.

The first result is known by the risk community for arbitrary random variables al-
most since the inception of distortion risk measures (see Wang, 1996), and has lead to
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many interesting results. For example, the concept of Choquet pricing and its associated
equilibrium conditions (De Waegenaere et al., 2003); the study of stochastic comparison
of distorted variability measures (Sordo and Suarez-Llorens, 2011); or the conditions for
optimal behavioral insurance (Sung et al., 2011) and the analysis of competitive insurance
markets in the presence of ambiguity (Anwar and Zheng, 2012). On the other side, the
relationship between the WOWA operator and the Choquet integral is also known by
the fuzzy systems community (Torra, 1998), as well as the relationship between distorted
probabilities and aggregation operators (see, for example, Honda and Okazaki, 2005).
Through the results shown in this section we provide a presentation that allows both
fields to share their knowledge and we can benefit from that connection.

Proposition 3.1. Let
(
N, 2N ,P

)
be a finite probability space, and let X be a discrete

finite random variable defined on this space. Let g : [0, 1]→ [0, 1] be a distortion function,
and let ρg be the associated distortion risk measure. Then, it follows that

Cg◦P (X) = ρg (X) .

Proof. Let N = {$1, ..., $n} for some n ≥ 1 and let us suppose that we can write
X (N) = {x1, ..., xn}, with X ({$i}) = xi, and such that xi < xj if i < j; additionally,
let k ∈ {1, ..., n} be such that xi < 0 if i = {1, ..., k − 1} and xi ≥ 0 if i = {k, , ..., n}.
In order to obtain the Choquet integral of X, a capacity µ defined on N is needed. As
previously indicated, P is a capacity on N that satisfies normalization, although it is not
the one that we need.

Since g is a distortion function, µ := g ◦ P is another capacity on N that satisfies
normalization: µ (∅) = g (P (∅)) = g(0) = 0, µ (N) = g (P (N)) = g(1) = 1, and if
A ⊆ B, the fact that P (A) ≤ P (B) and the fact that g is non-decreasing imply that
µ (A) ≤ µ (B).

Regarding X+, the permutation σ = id on (1, ..., k − 1, k, ..., n) is such that x+
σ(i) ≤

x+
σ(i+1) for all i or, in other words, x+

1 ≤ x+
2 ≤ ... ≤ x+

k−1 ≤ x+
k ≤ x+

k+1 ≤ ... ≤ x+
n . Then,

Aσ,i = {$i, ..., $n} and taking into account x+
i = 0 ∀i < k, we can write Cg◦P (X+) as

Cg◦P (X+) =
n∑
i=1

(
x+
i − x+

i−1

)
(g ◦ P) (Aσ,i) =

n∑
i=k

(
x+
i − x+

i−1

)
g

(
n∑
j=i

pj

)
. (3.1)

Additionally, permutation s on (1, ..., k − 1, k, ..., n) such that s (i) = n + 1 − i, sat-
isfies −x−s(i) ≤ −x

−
s(i+1) for all i, so −x−n ≤ −x−n−1 ≤ ... ≤ −x−k ≤ −x

−
k−1 ≤ −x

−
k−2 ≤

... ≤ −x−1 . We have As,i =
{
$s(i), ..., $s(n)

}
= {$n+1−i, ..., $1} and, therefore, Ās,i =
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{$n+2−i, ..., $n}. Taking into account that x−i = 0 ∀i ≥ k, we can write Cg◦P (−X−) as

Cg◦P (−X−) =
n∑
i=1

(
−x−s(i) + x−s(i−1)

) (
g ◦ P

)
(As,i) =

=
n∑
i=1

(
−x−n+1−i + x−n+2−i

) (
g ◦ P

)
(As,i) =

=
1∑
i=n

(
−x−i + x−i+1

) (
g ◦ P

)
(As,n+1−i) =

=
1∑
i=n

(
−x−i + x−i+1

) [
1− (g ◦ P)

(
Ās,n+1−i

)]
=

=
1∑
i=n

(
−x−i + x−i+1

)
[1− (g ◦ P) ({$i+1, ..., $n})] =

=
1∑

i=k−1

(
x−i+1 − x−i

) [
1− g

(
n∑

j=i+1

pj

)]
.

(3.2)

Expressions (3.1) and (3.2) lead to

Cg◦P (X) = Cg◦P (X+)− Cg◦P (−X−) =

= −
k−1∑
i=1

(
x−i+1 − x−i

) [
1− g

(
n∑

j=i+1

pj

)]
+

n∑
i=k

(
x+
i − x+

i−1

)
g

(
n∑
j=i

pj

)
=

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk

[
1− g

(
n∑
j=k

pj

)]
+

+
n∑

i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
+ xkg

(
n∑
j=k

pj

)
=

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk +

n∑
i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
.

(3.3)
Now consider ρg (X) as in definition 2.5, and note that random variable X is defined

on the probability space (N, 2N ,P). Given the properties of Riemann’s integral, if we
define x0 := −∞ and xn+1 := +∞, then the distortion risk measure can be written as

ρg (X) = −

[
k∑
i=1

∫ xi

xi−1

[1− g(SX(x))]dx−
∫ xk

0

[1− g(SX(x))]dx

]
+

+

∫ xk

0

g(SX(x))dx+
n+1∑
i=k+1

∫ xi

xi−1

g(SX(x))dx.

(3.4)

If we consider x ∈ [xi−1, xi), then FX(x) =
i−1∑
j=1

pj, since FX(x) = P (X ≤ x) and
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SX(x) = 1 −
i−1∑
j=1

pj =
n∑
j=i

pj. Given that the distortion function g is such that g(0) = 0

and g(1) = 1, expression (3.4) can be rewritten as

ρg (X) = −
k∑
i=1

∫ xi

xi−1

[
1− g

(
n∑
j=i

pj

)]
dx+

∫ xk

0

[
1− g

(
n∑
j=k

pj

)]
dx

+

∫ x0

0

g

(
n∑
j=k

pj

)
dx+

n+1∑
i=k+1

∫ xi

xi−1

g

(
n∑
j=i

pj

)
dx =

= −
∫ x1

−∞
[1− g (1)] dx−

k∑
i=2

∫ xi

xi−1

[
1− g

(
n∑
j=i

pj

)]
dx+

+

∫ xk

0

[
1− g

(
n∑
j=k

pj

)]
dx+

∫ xk

0

g

(
n∑
j=k

pj

)
dx+

+
n∑

i=k+1

∫ xi

xi−1

g

(
n∑
j=i

pj

)
dx+

∫ +∞

xn

g (0) dx =

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk

[
1− g

(
n∑
j=k

pj

)
+ g

(
n∑
j=k

pj

)]
+

+
n∑

i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
=

= −
k∑
i=2

(xi − xi−1)

[
1− g

(
n∑
j=i

pj

)]
+ xk +

n∑
i=k+1

(xi − xi−1) g

(
n∑
j=i

pj

)
.

(3.5)
And then the proof is finished because ρg (X) = Cg◦P (X) using (3.5) and (3.3).

Let us present Cg◦P (X) in a more compact form. We denote Fi−1 = 1 − g

(
n∑
j=i

pj

)

and Si−1 = g

(
n∑
j=i

pj

)
for i = 1, ..., n + 1, so Fi−1 = 1 − Si−1. Recall that F0 = 0 and

Sn = 0, then
k∑
i=2

(xi−1 − xi)Fi−1 =
k−1∑
i=1

xi (Fi − Fi−1)− xkFk−1

and,
n∑

i=k+1

(xi − xi−1)Si−1 =
n∑

i=k+1

xi (Si−1 − Si)− xkSk.
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The previous expressions applied to Cg◦P (X) lead to

Cg◦P (X) =
k−1∑
i=1

xi (Fi − Fi−1)− xkFk−1 + xk +
n∑

i=k+1

xi (Si−1 − Si)− xkSk =

=
n∑
i=1

xi (Si−1 − Si) =
n∑
i=1

xi

[
g

(
n∑
j=i

pj

)
− g

(
n∑

j=i+1

pj

)]
.

(3.6)

If g = id, then ρid(X) = E (X). The same result for a continuous random variable
is easy to prove using the definition of distortion risk measure and Fubinni’s theorem.
Expression (3.6) is useful to prove the following two propositions.

Proposition 3.2 (OWA equivalence to distortion risk measures). Let X be a discrete
finite random variable and

(
N, 2N ,P

)
be a probability space as defined in proposition 3.1.

Then there exist a unique OWA~wx operator such that ρg (X) = OWA~wx (~x). The OWA
operator is defined by weights

wx,i = g

(
n∑
j=i

px,j

)
− g

(
n∑

j=i+1

px,j

)
, i = 1, ..., n,

where px,j is the probability of xj for all j.

Note that this result shows that any distortion risk measure defines a set of OWA
operators indexed by the discrete and finite random variables Γ defined on

(
N, 2N ,P

)
,

ρg ↔ Sg,Γ := {OWA~wx|X ∈ Γ} .

Therefore, random variable X must be fixed to obtain a one-to-one equivalence between
a distortion risk measure and an OWA operator.

Proposition 3.3 (WOWA equivalence to distortion risk measures). Let X be a discrete
finite random variable and

(
N, 2N ,P

)
be a probability space as in proposition 3.1. If

ρg is a distortion risk measure defined on this probability space, consider the WOWA~v,~q

operator such that h = g, ~q = ~px and vi = g

(
n− i+ 1

n

)
− g

(
n− i
n

)
for all i = 1, ..., n.

Then
ρg (X) = WOWAg,~v, ~px (~x) ,

where ~px is the vector of probabilities of random variable X, and we explicitely indicate
in the subindex that WOWA~v, ~px depends on g

Proof. From proposition 3.2 it is known that there exists a unique ~wx ∈ [0, 1]n such that
OWA~wx (~x) = ρg (X):

wx,i = g

(
n∑
j=i

pj

)
− g

(
n∑

j=i+1

pj

)
=

= g (SX (xi−1))− g (SX (xi)) .

(3.7)
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In addition, there exists an OWA~ux operator such that OWA~ux = WOWAg,~v,~px defined
by

ux,i = g

 ∑
Ωj∈Aid,i

px,j

− g
 ∑

Ωj∈Aid,i+1

px,j

 =

= g (SX (xi−1))− g (SX (xi)) .

(3.8)

Expressions (3.7) and (3.8) show that ~wx = ~ux and, due to the uniqueness of the
OWA operator, we conclude that ρg (X) = OWA~wx (~x) = WOWAg,~v,~px (~x), where vi =

g

(
n− i+ 1

n

)
− g

(
n− i
n

)
.

Like in the case of the OWA operator, the relationship of the WOWA operator and
distorsion risk measure ρg is such that the distortion risk measure can be interpreted as
a set of WOWA operators indexed by the discrete and finite random variables defined
on
(
N, 2N ,P

)
, ρg ↔ Tg,Γ := {WOWAg,~v,~px |X ∈ Γ}. Again, the one-to-one equivalence

between a distortion risk measure and a WOWA operator is obtained given that the
random variable is fixed.

To summarize the results, for a given distortion function g and a discrete and finite
random variable, there are three alternative ways to calculate the distortion risk measure
that lead to the same result than using definition 2.5:

1. by means of the Choquet integral of X with respect to µ = g ◦ P using expression
3.6,

2. applying theOWA~wx operator to ~x, following definition 2.7 with wx,i = g

(
n∑
j=i

px,j

)
−

g

(
n∑

j=i+1

px,j

)
, i = 1, ..., n, and px,j the probability of xj for all j,

3. and, finally, applying the WOWAg,~v,~px operator to ~x, following definition 2.9, where

vi = g

(
n− i+ 1

n

)
− g

(
n− i
n

)
and px,j the probability of xj for all j.

3.1 Interpreting the concept of orness

Finally, we can derive another interesting application from expression (3.6). In particular,
the concept of degree of orness introduced for the OWA operator may be formally extended
to the case of Cg◦P (X), as:

orness (Cg◦P (X)) :=
n∑
i=1

(
i− 1

n− 1

)
· [g (SX (xi−1))− g (SX (xi))] . (3.9)

Note that this result is similar to (2.1). This result is now applicable to both positive
and negative values and only the distorted probabilities are considered among capacities.
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Let us show risk management applications of the degree of orness of the distortion risk
measures. Note, for instance, that the regulatory requirements on risk measurement based
on distortion risk measures may be reinterpreted by means of the degree of orness. Given
a finite and discrete random variable X, when distortion risk measure ρg (X) is required,
the regulator has an implicit preference weighting rule with respect to the values of X
that takes into account probabilities. This preference weighting rule can be summarized
by orness (OWA~wx), where ~wx is such that wx,i = g (SX (xi−1)) − g (SX (xi)). There
are some cases of special interest, such as the mathematical expectation, the V aRα and
TV aRα risk measures.

If g = id, then Cg◦P ≡ E and

orness (E (X)) :=
n∑
i=1

(
i− 1

n− 1

)
· [SX (xi−1)− SX (xi)] =

=
n∑
i=1

(
i− 1

n− 1

)
· [px,i] =

n∑
i=1

(
i

n− 1

)
· px,i −

1

n− 1
.

(3.10)

In particular, if the probability is discrete and uniform, i.e. px,i = 1
n
, then its orness

is 1/2.
The degrees of orness of the V aRα and TV aRα distortion risk measures are obtained

as follows. Given a confidence level α ∈ (0, 1), let kα ∈ {1, 2, ..., n} be such that xkα =
inf{xi|FX (xi) ≥ α} = sup{xi|SX (xi) ≤ 1 − α}, i.e. xkα is the α−quantile of X. From

Table 2.1 ψα (SX (xi)) = 1(1−α,1] (SX (xi)) for V aRα and γα (SX (xi)) = min

{
SX (xi)

1− α
, 1

}
for TV aRα, and then

V aRα (X) : ψα (SX (xi−1))− ψα (SX (xi)) =


0 i < kα
1 i = kα
0 i > kα

TV aRα (X) : γα (SX (xi−1))− γα (SX (xi)) =


0 i < kα

1− 1

1− α

n∑
j=kα+1

px,j i = kα

px,i
1− α

i > kα.

(3.11)
From expressions (3.6) and (3.11) the degrees of orness of V aRα and TV aRα can easily

be obtained as:

orness (V aRα (X)) =
n∑
i=1

(
i− 1

n− 1

)
· [ψα (SX (xi−1))− ψα (SX (xi))] =

=
kα − 1

n− 1

(3.12)
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and

orness (TV aRα (X)) =
n∑
i=1

(
i− 1

n− 1

)
· [γα (SX (xi−1))− γα (SX (xi))] =

=

(
kα − 1

n− 1

)
·

[
1− 1

1− α

n∑
j=kα+1

px,j

]
+

n∑
i=kα+1

(
i− 1

n− 1

)
· px,i

1− α
=

=
kα − 1

n− 1
+

1

1− α
·

n∑
i=kα+1

(
i− kα
n− 1

)
px,i.

(3.13)
So orness is directly connected to the α level chosen for the risk measure, i.e. the value

of the distribution function at the point given by the value of the risk measure. In other
words, for the Tail Value-at-Risk, orness indicates which new α∗ level would be necessary
for the Value at Risk to obtain the value of Tail Value-at-Risk at the initial α level.

The degree of orness of the distortion risk measure may be then calculated as a measure
of the aggregation preference.

4 Illustrative example

A numerical example is provided to illustrate previous concepts. Let us consider two ran-
dom variables X and Y such that xi = yi for all i and (x1, x2, x3, x4, x5) = (−2,−1, 0, 1, 2).
Table 4.1 summarizes the probabilities of both random variables.

Table 4.1: Summary of the probabilities of both rv

i xi = yi px,i FX(xi) SX(xi) py,i FY (yi) SY (yi)
0 −∞ 0 1 0 1
1 −2 0.18 0.18 0.82 0.14 0.14 0.86
2 −1 0.31 0.49 0.51 0.11 0.25 0.75
3 0 0.225 0.715 0.285 0.72 0.97 0.03
4 1 0.25 0.965 0.035 0.02 0.99 0.01
5 2 0.035 1 0 0.01 1 0

We can calculate distortion risk measures for X and Y using aggregation operators.
In particular, we are interested in E, V aRα and TV aRα for certain α ∈ (0, 1). Using
expression (3.6) and ψα and γα as in Table 2.1 we obtain expressions (4.1) and (4.2) for
V aRα and TV aRα.

18



V aRα (X) =


x1 ·

[
1− 1(1−α,1] (p2 + p3 + p4 + p5)

]
+

x2 ·
[
1(1−α,1] (p2 + p3 + p4 + p5)− 1(1−α,1] (p3 + p4 + p5)

]
+

x3 ·
[
1(1−α,1] (p3 + p4 + p5)− 1(1−α,1] (p4 + p5)

]
+

x4 ·
[
1(1−α,1] (p4 + p5)− 1(1−α,1] (p5)

]
+

x5 ·
[
1(1−α,1](p5)− 0

] (4.1)

TV aRα (X) =



x1 ·
[
1−min

{
(p2 + p3 + p4 + p5)

1− α
, 1

}]
+

x2 ·
[
min

{
(p2 + p3 + p4 + p5)

1− α
, 1

}
−min

{
(p3 + p4 + p5)

1− α
, 1

}]
+

x3 ·
[
min

{
(p3 + p4 + p5)

1− α
, 1

}
−min

{
(p4 + p5)

1− α
, 1

}]
+

x4 ·
[
min

{
(p4 + p5)

1− α
, 1

}
−min

{
(p5)

1− α
, 1

}]
+

x5 ·
[
min

{
(p5)

1− α
, 1

}
− 0

]
(4.2)

In this example we work with a confidence level α = 95%. In addition to these risk
figures, the weighting vectors linked to the OWA and WOWA operators may be deduced
for each distortion risk measure and random variable. Results are displayed in Tables 4.2
and 4.3.

Table 4.2: Summary of distortion risk measures and their associated distorted probabilities

pi E V aR95% TV aR95%

xi = yi X Y X Y X Y X Y
−2 0.18 0.14 0.18 0.14 0 0 0 0
−1 0.31 0.11 0.31 0.11 0 0 0 0
0 0.225 0.72 0.225 0.72 0 1 0 0.4
1 0.25 0.02 0.25 0.02 1 0 0.3 0.4
2 0.035 0.01 0.035 0.01 0 0 0.7 0.2

Risk value −0.35 −0.35 1 0 1.7 0.8
Degree of orness 0.4125 0.4125 0.75 0.5 0.925 0.7

Some comments may be made. First, observe that point probabilities (pi 7→ wi)
are distorted and a weighted average of the random values with respect to this distortion
(OWA~w) is calculated to obtain the distortion risk measures. Second, the degree of orness
of a distortion risk measure can be understood as another risk measure for the random
variable, with a value that belongs to [0, 1]. The information about riskiness that degree of
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Table 4.3: Summary of WOWA vectors

rv WOWA vectors Distortion risk measure Distortion function

X

~px = (18%, 31%, 22.5%, 25%, 3.5%) E id
~v = (1

5
, 1

5
, 1

5
, 1

5
, 1

5
)

~px = (18%, 31%, 22.5%, 25%, 3.5%)
V aR95%, TV aR95% ψ95%, γ95%~v = (0, 0, 0, 0, 1)

Y

~py = (14%, 11%, 72%, 2%, 1%) E id
~v = (1

5
, 1

5
, 1

5
, 1

5
, 1

5
)

~py = (14%, 11%, 72%, 2%, 1%)
V aR95%, TV aR95% ψ95%, γ95%~v = (0, 0, 0, 0, 1)

orness provides when these two random variables are compared is similar to the riskiness
information deduced by their respective distortion risk measures. Third, the results show
that weights ~v for the WOWA represent the risk attitude. In this example, we are only
worried about the maximum loss when we consider V aR95% and TV aR95%. By contrast,
all values have the same importance in the case of the mathematical expectation. Note
that weights take into account how the random variable is distributed by means of ~px (~py,
respectively).

Observe that V aR95% and TV aR95% have equal ~v and ~p for each random variable,
although the distortion risk measures take different values. It is due to the fact that h
function in WOWA plays an important role to determine the particular distortion risk
measure that is calculated. As shown in Table (2.1), h = ψ95% in the case of V aR95% and
h = γ95% in the case of TV aR95% are two clearly different functions. Finally, we want to
emphasize that the one-to-one relationship between a distortion risk measure and OWA~w

operator depends on the random variable. It would be easy to check that the OWA~w

linked to V aR95% (X) matches with the one linked to V aR99% (Y ).

5 Discussion and conclusions

This article shows that distortion risk measures, OWA and WOWA operators in the dis-
crete finite case are mathematically linked by means of the Choquet Integral. Aggregation
operators are used as a natural form to introduce human subjectivity in decision making.
From the risk management point of view, our main contribution is that we show how
distortion risk measures may be derived -and then computed- from ordered weighted av-
eraging operators. The mathematical links presented in this paper may help to interpret
distortion risk measures under the fuzzy systems perspective. We show that the aggre-
gation preference of the expert may be measured by means of the degree of orness of
the distortion risk measure. Regulatory capital requirements and provisions may then be
associated to the aggregation attitude of the regulator and the risk managers, respectively.
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In our opinion, the mathematical link between risk concepts and fuzzy systems con-
cepts presented in this paper offers a new line of research to be explored, that could
provide a new perspective in quantitative risk management.

Appendix 1

Proof of OWA uniqueness
Given two different vectors ~w and ~u from [0, 1]n we wonder if OWA~w = OWA~u, i,e, that
the respective OWA operators on Rn are the same. We show that this is not possible.
Suppose that, for all ~x ∈ Rn, OWA~w (~x) = OWA~u (~x). In particular, if we consider
elements ~zk ∈ Rn, k = 1, ..., n defined by

~zk,i =

{
0 if i < k
1/ (n− i+ 1) if i ≥ k

Then, going from k = n to k = 1, we have that:

• Step k = n. We have ~zn = (0, 0, ..., 0, 1), and permutation σ = id is useful
to calculate OWA~w (~zn) and OWA~u (~zn). Precisely, OWA~w (~zn) = 1 · wn and
OWA~u (~zn) = 1 · un. If OWA~w = OWA~u, then un = wn.

• Step k = n − 1. We have ~zn−1 =
(
0, 0, ..., 1

2
, 1
)
, and permutation σ = id is still

useful. So OWA~w (~zn−1) = 1
2
· wn−1 + 1 · wn and, taking into account the previous

step, OWA~u (~zn−1) = 1
2
· un−1 + 1 · wn. If the hypothesis OWA~w = OWA~u holds,

then un−1 = wn−1.

• Step k = i. From previous steps we have that uj = wj, j = i + 1, ..., n and in this
step we obtain ui = wi.

• Step k = 1. Finally, supposing again that OWA~w = OWA~u, we obtain that
uj = wj for all j = 1, ..., n. But this is a contradiction with the fact that ~w 6= ~u.
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